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1. The llmltlng state of a granular medium Is defined by the equality 

gl=)z,J+aa,=~(a~-5q)+$a(a~+5,)=uS=z* (1.1) 
In which S Is the temporary resistance of the medium In tension; Q. Is 

Its coefficient of internal friction; T+, Is the llmltlng resistance of the 

medium to pure shear and 01, sar u, are the principal stresses (It being 

assumed that (II > 0, > 0s). Prandtl [l] and Quest [2 and 33 have proposed 

(1.1) as a yield criterion for solid bodies, considering these as granular 

media with a high cohesion between particles. An analogous criterion has 

been proposed by Derlagln cl91 on the basis of a physical analysis. Evldenly 

S should be taken to be the theoretical and not the actual strength of the 

material of the body, since the latter depends on local defects, whereas In 

the context of Formula (1.1) It must include the cohesive stress averaged 

over the whole shear plane. 

ExprFsslon (1.1) la a refinement of St.Venant’s criterion In that It takes 

Into account the effect of normal stress on the value of the critical tan- 

gential stress. 

A related criterion would be that of Schlelcher [4] 

ga = q + pa = JCzz* (p = const) 

Where 
(1.2) 

Q = & nQ - q + (52 - cs3y + (Q3 - ol)” = Jf/Q:6: Y 13 (1.3) 

($j are the components of the deviator of the stress tensor) 

0 = f (QI + 53 + bs) = $6ii (1.4) 
Expression (1.2) Is a refinement of Mlses’ criterion In that It takes 

Into account the effect of the mean normal stress on the critical value of 

the Intensity of shear stress (or, what amounts to the same thing, of mean 

shear stress C63). 
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2. In generalizing 

two extreme hypotheses 

a) The hardening 

internal friction. 

V.V.Novozhllov 

criteria (1.1) and (1.2) to strain-hardening materials 

are possible. 

is governed by an increase in the coefTl.cient of 

b) hardening depends on the Internal elastic forces of an intergranu- 

lar and inter-block nature. 

If (a) 1s valid then the boundary of the region of elastic strains (de- 

termined without taking into account the effect of 0 OF 0.1 expands in 

all dkctions under Plastic deformation, and if (b) IS valld,thls region 
(again determined without takingintoaccount the effect of O or a,) is 

displaced as a rigid body CT]. 

In actual fact both these effects exist and, as experiment shows, (see, 

for example, t83) initially (with Plastic strains not exceeding 1 - 8) the 

effect of boundary translation predominates but thereafter the process IS 

mainly one of expansion. The same conclusion Is reached from the results 

of exPerimenta studies of the heat generated during plastic deformation. 

It has been established that part of the work done in plastic deformation 

is not converted into heat, which indicates the accumulation within the body 

of latent elastic energy. The ratio of this part of the work to the total 

work done in the plastic deformation decreases monotonously with increase in 

the latter [9]. It follows that the part played by elastic microstresses In 

the hardening process becomes less significant and gives way to the effect 

of the increase in frictional forces. 

These phenomena may be explained as follows: polycristalline bodies, 
bei 
plc "i 

microscopically (and supermicroscopically) heterogeneous and anisotro- 
on account of their granular structure and in view of the structural 

defects in each lndlvidual grain) constitutes (from the point of view of 
structural mechanics) a statically Indeterminate system with a huge number 
of elements. As the loading Increases the elements of this system enter the 
plastic range not simultaneously but gradually, which macroscopically is 
observed as a monotonous increase in the coefficient of friction. In addi- 
tion, as plastic deformation develops, elastic Interactions are set up 
between the element of the system which are interpreted macroscopically as 
a hardening of the material with increase in load and a softening Of the 
material under plastic deformation in the opposite direction (hence the 
Bauschinger effect). 

Special mention should be made of alternating plastic deformation which we 
shall now discuss in some detail. The work done in such deformation increases 
with the number of cycles n and Is approximately proportional to this num- 
ber, the magnitudes of the plastic strains (or stresses) lying within certain 
specified limits. It has been discovered ([lo], (111 and others) that the 
plastic hysteresis loop after an initial stage Usually becomes steady: the 
material, so to speak, adapts Itself to the cyclic loading. In fact this 
means that as the number of cycles increases the magnitude of the COeff~ci- 
ent of internal friction becomes stabilized and thereafter the shape and 
size Of the hysteresis loop is determined only by microelastic effects. It 
is true that one can find references 112 and 133 which indicate that stabi- 
lity of the plastic hysteresis loop under cyclic loading is not always 
achieved; as the number of cycles increases the loop either narrows mono- 
tonously Or It widens monotonously. The first case corresponds to a monoton- 
ous increase in the coefficient of Internal friction (with increase In the 
number of cycles) and the second to a monotonous decrease. Nevertheless, 
in cyclic loading miFroelastlc effects undoubtedly predominate over the 
effects of change In internal friction, particularly when the loop is nsrrow. 
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Consequently, as a fundamental hypothesis, we shall assume that the coeffi- 
cient of Internal friction Is constant. However, in order to be able to 
compare the results which follow from both hypotheses the other extreme case 
will be studied, In which hardening Is attributed wholly to an increase in 
the coefficient of Internal friction. 

3, If we take the coefficient of Internal friction to be constant and 

postulate that the relation between plastic strains and the macroscoPic ten- 

sor sLJJ which defines the elastic microstresses [14 and 73, 1s linear, 

then the criterion (1.1) can be generalized as follows: 

61 
*=-I_ 

2 (31 - 33) - +-G* (Q” - E3p) + f d (a1 + $) = cd = T,(“) (3.1) 

Here EIP, EpP, E~P are the principal components of the plastic strain 

tensor (It being assumed that Elp > E2* > Esr), G* is the strain hardening 

modulus in shear, -c,(O) Is the lnltlal plastic resistance of the material 

to pure shear (I.e. the resistance to shear when E'ij .= 0). 

Similarly, the criterion (1.2) can be generalized to the case of an ideal 

Bauschlnger effect [7]. 
gz * = QiO + po = viz z*(O) (3.2) 

Here 

QiO = vm = &1/(c$ - Gs0)2 + (Gs" - 4s0)2 + (aso - o1o)2 (3.3) 

Oi"j = Qij - Sij, G;' = oi; -$ a,& (3.4) 

Sij = 2G"E.P 
v 

(3.5) 

The quantities T.+(O), cc, p and G* In (3.1) and (3.2) are assumed to be 
constant. We apply the associated flow law 

de$=hgdF (3.6) 
11 

As a loading criterion we take F L 0, * (3.1). In this way we obtain 

the following relations between stresses and plastic strains: 

(da% = $<I +o+&~,*, (de*), = 0, (de’), = - f (1 --a) hdgl* (3.7) 

Here (de,), are the principal values of the tensor of plastic deformation 

Increments dcu,, . It follows from (3.7) that 

de” = (de), + (dep)z + (dep), = ahdgl* = a [(dtP$ - (d&p),] > 0 (3.8) 

This shows, therefore, that if we take a strain-hardening law In the form 

(3.1) it follows from the associated flow law that any plastic deformation 

must be accompanied by a residual monotonous Increase in volume, which must 

be interpreted physically as the formation within the body of microscopic 

holes, i.e. as plastic cavitation. 

If we now take (3.2) as the strain-hardening criterion and substitute 

this expression in the associated flow law (3.6), we obtain 

de,: = 5 + ipsij hdg2* c 
1 I (3.9) 

Thus the plastic deformation may be sub-divided into a deviator part 
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(3.10) 

and an all-round residual change in volume 

dep = de,: = phdg,” (3.11) 
Squaring (3.10) (In the scalar sence), we obtain 

d3P = vdz$’ da$ = hdgz* > 0 (3.12) 

where dP is the differential of the arc of the deviator tlpath" of plastic 

deformation. Also, 

dep = pdap or ep :Z PL > 0 (L = 1 dspj 

Here L Is the length of the plastic deformation "path". 

(3.13) 

It is obvious that both the hardening laws (3.1) and (3.2) considered 
above lead to the conclusion that plastic deformation must be accompanied 
by a residual Increase in volume (plastic cavitation). The difference In 
these two laws,however, Is that according to (3.1) and (3.6) the additional 
plastic strains which result from taking ty. Into account in the yield cri- 
terion reduce to plane strain (an all-round expansion In the shear plane) 
whereas according to (3.2) and (3.6) the additional plastic strains result- 
ing from taking Into account the mean normal stress o in the yield crite- 
rion reduce to an all-round (three-dimensional) expansion. Which of the 
two variants of the theory is closer to the truth must be established experi- 
mentally. 

4. In order to complete the investigation we shall In addition derive 

formulas which correspond to the assumptlo that hardening is governed by an 

increase in the coefficient of internal friction. Here we must take r+ in 

(1.1) and (1.2) to be a fhmction of the plastic strains which varies accord- 

ing to the hardening law. This means that the coefficients c and fl will 

also be variable. As a first approximation we can estimate c by discarding 

the second term of the left-hand side of (1.1). Then 

(4.1) 

The theoretical resistance of the material in tension should be considered 

as proportional to Young'3 modulus. 
S_$E 

where k Is a non-dimensional constant of the order of 10 (see, for example, 

Cl51 page 19). 

!ChllS a= 
51 - 63 

k-- 
2E 

Substituting (4.2) Into (1.1) we find that 

(4.2) 

(4.3) 
Substituting (4.3) into the associated flow law we obtain the following 

formulas for the principal values of the tensor of plastic strain increments: 

(dep)I = s (1 + $0,) hdglt (dep)% = 0, (deP)R = - $ (1 + % Jo) hdgI (4.4) 

It follows from this that 
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(l@J = (dEP)l + (d&P)2 + (d&P)3 = - $ isi3 (ql + 61 VePM -= 

= g (~,,,dp -t G,~E,P] = g @A, + d&J (4.5) 

Here A, Is the work done by the maximum shear stresses and A,, is the 

work done by the normal stresses Q, In the plastic deformation, 

drp = $ [(CM), - (deP),], c&p = fUd~~)1+ C&PM (4.6) 

Also, 
eP=g(A,+A,)>O 

We shall consider now the case when (1.2) 1s taken as 

condition. Assuming the coefficient B to be variable, 

value (to a first approximation) from the equality 

(4.7) 

the strain-hardening 

we can determine its 

Ure S Is the theoretical strength In all-round tension. 

Then 
g2 = (1 + ICI $) 5i = Z* 

Substituting (4.9) In the associated flow law, we find that 

de& = [ 4 (*+ $5) + ~ 5i*~~] hdg, 

Thus the Increment in the deviator of the plastic strain tensor Is 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

The second term In the square brackets in (4.10) corresponds to an all- 

round residual change In volume 

deP = d& = ‘% aihdg, (4.12) 

Squaring both sides of equality (4.11) (In a scalar sense), we obtain 

l/d36 da8 = daP = (1 + /cl +) hdg2 (4.13) 

It follows from (4.12) and (4.13) that 

Whence 

(4.14) 

ep = -$+jid3p = $! A>0 (4.15) 
Cl 

We see then that the two variants of the theory considered In this section 
(based on the assumption that the hardening effect must be ascribed to an 
increase in frictional forces) enable us to conclude that any plastic defor- 
mation must be accompanied by a residual Increase In volume the magnitude of 
which 1s found to be proportional to the work done In the plastic deforma- 
tion. An analogous conclusion Is reached In the variants of the theory con- 
sidered In the preceding Section (based on the assumplon that the hardening 
effect must be ascribed to mlcroelastlc forces) with, however, the quantlta- 
tlve difference that the residual Increase In volume proves to be propor- 
tional not to the work done In the deformation, but to the length of the 
path of the plastic deformation. 
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5. The yield criteria (1.1) and (1.2) which take Into account the effect 

of normal stresses on the resistance to plastic deformation were proposed a 

long tlme ago, although nowadays they are not used, and even mention of them 

Is seldom encountered In the literature. This is explalned,by the fact that 
experiment shows only a slight effect of both c and a, on the way Plastic 
deformation arises and develops. In general this is in complete agreement 
with the estimate given above for the coefficient of friction (1 , which, 

according to (3-l), is !(I) z wi 
a 5.' '~~_ =I Ii _ir__ 

E (-7. ,I ) 

(where F Is of the order of lo), from which it follows that c (and con- 

sequently g as well.) must be of the order of 0.01. As a rule this is pre- 
cisely the order of the corrections made to the value of plastic strains 

when u and u, are taken into account in the loading criteria, i.e. these 

corrections usually lie beyond the limits of accuracy of the formulation of 

the phenomenologlcal theory of plasticity. However, there is a case (of con- 
siderable practical interest) In which these corrections are signlflcant and 

comparable with terms of the basic order. This is the case of cyclic loading 
when the plastic strains oscillate between certain maximum and minimum values. 

When the cycle 1s symmetrical the path of plastic deformation is given by 

Formula 
L = 2nf (f = p d3p) (G.2) 

Here n Is the number of cycles and the Integration Is carried out over 

one half-cycle. L increases proportionally to the number of cycles and for 

a sufficiently large n can reach a Significant order inspite of the small- 

ness of J' . 

Consequently the residual plastic change of volume as given by Formula 

(3.13) can become significant lnspite of the smaLIn@ss of the coefficient 6. 

We arrive at analogous conclusions from the other variants of the theory con- 

sidered above. 

Thus, cyclic loading is a case which is particularly suitable for illus- 
trating the corrections to be appIled to the theory of plaStlcity when o 
and 0, are taken Into account ln the yield crlterla, Since the baelc terms 
In the solution In this case are all the time bounded by definite limits. 
whereas the correction terms increase monotonously prop&tlonally to the-num- 
ber of cycles. In using these results, however, it must be borne in mind 
that the-formulas which-were taken as the starting point refer to the caSe 
of quasi-static lsotermal deformation. Therefore in the foregoing discussion 
of cyclic loading we must assume that the loading takes place sufficiently 
slowly. The possibility of applying the results to the case of rapidly vary- 
lng loads requires a Special investigation altough the qualitative aspect of 
the phenomenon would evldently Still hold good. 

6. The results we have summarized are based on two hypothesee. 

a) The aSSocl8ted yield law is valid to an extremely high degree. 

b) The influence of u or S, on the yield boundary, even to a first 
approximation, can be taken Into account by the crlterla (1.1) 8nd (1.2). 
Theee aasumptlone are open to question and the reeults obtained can be asses- 
sed only by experl#rmnt. At the request of the author 1a.S. Sldocln and O.G. 
Rybeklna carried out some experiments on three tubular specimens of aluminlum 
alloy subjected to alternating torsion. The dlSWMIlOnS of the SpeClmenS were 
as follows: external diameter d - 3Cmm, the length of the working part 
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1 I 12Omm and the thickness h - 2mm . The material of the specimens was 
annealed in order to eliminate initial anisotropy. The width of the plastic 
hysteresis loop in all experiments was taken as 1% (converting from shear 
to tension-compression). No restraint was imposed on the longitudinal defor- 

mation of the specimen. Small peripheral 
notches were cut on the specimens and 
the change in distance between these 
notches was measured during the tests. 
The change in the diameter of the speci- 
mens was also measured. The devices 
used measured the longitudinal exten- 
sions to an accuracy of 1r3$ and the 

Fig. 1 Fig. 2 

lateral extensions to an accuracy of 2 x 10-a$ , which represented not more 
than 5% referred to the maximum extensions observed during the experiments. 
Consequently, the results obtained cannot be attributed to measuring errors. 
The results are shown in Pigs. 1 and 2 from which It can be seen that during 
the first few cycles the curves of change in length and diameter of the spe- 
cimens are of a complex and Irregular nature, which evidently corresponds to 
a transistory phase - the period in which the material adapts itself to the 
cyclic loading. This is followed by a monotonous increase in both the length 
and the diameter of the specimens, this increase being approximately propor- 
tional to the number of cycles. The increments in the longitudinal and lat- 
eral strains over one cycle were found to be of the same order. 
was subjected to 69 cycles; 

Specimen 1 
specimens 2 and 3 failed after 21 and 26 cycles, 

respectively, so that for specimen 2 the last strain was measured after 20 
cycles and for specimen 3 after 25 cycles. Unfortunately It was not possible 
in these experiments to make sufficiently accurate measurements of the change 
in thickness of the specimens (which according to the first variant of the 
theory should remain constant and which according to the second variant of 
the theory should increase in the same proportion as the length and diameter). 
Thus the experiments do allow us to make a comarative assessment of criteria 
(1.1) and (1.2). 

It is seen that qualitatively the theory is borne out by experiment. The 
maximum values of the additional extensions of the specimens (the strains 
which are accopmpanied by a plastic change in volume) are about 0.4% , i.e. 
are comparable with the Tvldth of the plastic hysteresis loop and thus are 
quantities of the basic order. Experimental studies in this field are con- 
tinuing and the results will be published in the near future. 

Concerning plastic cavitation andclts probable effect on the cyclic 
strength of materials, frequent mention is to be found In the revelant llter- 
ature. It is considered to be a process mainly of a granular nature which 
Initiates the formation of fatigue cracks. The latter are considered to be 
the result of the merging of a series of body defects (lacunae) which occurs 
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after cavit tlon Is sufficient1 developed. Some valuable Information which 
supports thts conclusion and whfch is based on the analysis of numerous vis- 

ual observations using a large Zeiss microscope can be found in [16]. Nadai 
([17], pa@! 261) mentions the plastic Increase in volume discovered experl- 
mentally under conditions of large deformations. Some authors have emDha- 
sized the ~sslblllty of Identifying cavitation with the growth of e&sting 
craoks [ 181. HOWeVer, until now "the mechnism of pLastlc cavitation under 
CYCllC loadins has not been clarified" ([lg], page 437). It has been shown 
above (at least for quasi-static Isothermal deformations) that plastic cavi- 
tation follows from the associated flow law and the assumption that the load- 
ing condltlon, 
stress. 

even very slight, depends on a, or on the mean normal 
Within the framework of these assumptions four variants of the 

phenomenologlcal theory of plastic cavitation have been derived. 

In Conclusion we raise the delicate question, which quite likely has 
already ocaureed to the reader, as to what extent the above theory agrees 
with modern conaepts in solid-state physics and particularly with the con- 
CePtS of dislocations and the part they play In plastic deformation. Is not 
the COnaePt of a solid body as a granular medium with a high cohesion between 
particles an archaism similar to the concept of shear as the slldlng of one 
plane over another ln the presence of dry friction? For It has been proved 
that shear Is the result of the displacement of dislocations - a process 
which develops gradually at a finite rate and not one which simultaneously 
embraces the whole plane of shear. However, It seems that both points of 
view can be reconciled. We should not forget that In actual bodies there are 
not Single dlsloaatlons but many, and the properties of statistical ensembles 
frequently differ considerably from the Individual properties of their mem- 
hers. We ml&t recall the law by which a gas enclosed ln some container 
exerts a uniform normal static pressure on the walls. Strictly speaking, 
this assertion Is invalid since In actual fact what Is called here a "uniform 
static pressure" Is a result of the Impacts of particles of the gas on the 
walls, I.e. the sum of discrete reactions. However, since the number of 
particles Is very large and the time between impacts very small, In a macro- 
scopic observation all their effects merge and as a result the concept of a 
gas In a aontalner as a continuous medium at rest but attempting to expand 
In all directions Is legitimate. 

To derive the laws of plastic deformation from the properties of an lndl- 
vldual dislocation or from a small number of dislocations would be Just as 
wrong as deriving the properties of gases by considering the motion of one 
or several molecules. 

When a number of dislocations are simultaneously dlsplaaed In a body and, 
enaounterlng various Sorms of obstacles, form walls or lattices It Is proba- 
ble that the body Is subdlvlded into volumetric elements relatively clear of 
defeats separated from one another by surfaces made up of dlslocatlons. At 
the am tlms a solid crystalM.ne body Is made up of rigid elements which 
are able to mve one relative to another due to the surrounding defects. Is 
not this situation remlnlsoent of granular bodies? The ability of dlsloca- 
tlons to railtlply and to dlaappear, which compllaates the picture, does not 
alter It qualltatlvely. 

These arguments should not be taken as aondemnatlon of the simple meahan- 
Ical models so often used ln the theory of plaatlalty. The final judsement 
on theaa oan on&y cams from a statletioal theory of solid bodies which takes 
Into account defeats ln their stI%ctuTe, but unfortunately this theory Is 
still ln a rdntary state. In any Case, such mechanical models are in 
fact substitutes for the statistical theory of solid bodies with their de- 
fects tan l&o acaount, In the same way that the Boyle-EIariott law was 
once a phc~nol6gloal substitute for the theory of gases - Until It was 
derived trw this theory and beoams Its corolXtary. *obably the fate of the 
phe-1 

T 
orl theory 0s plastla$t all1 be the same - sooner or later Its 

baslarwwl B (udalsothoae dearorl & d ln this paper) will be drlved Prom 
the statlstloal theory of solid bodies. 
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