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1, The limlting state of a granular medium 1s defined by the equality
1 1
g1=|Tm| tacn =5 (61—05) + ya(a1+ o) =aS=7,  (1.1)

in which § 1s the temporary resistance of the medium in tension; o 1is
its coefficlient of internal friction; r, is the limiting resistance of the
medium to pure shear and e, , 0,, 0y are the princlpal stresses (1t being
assumed that O, > Oy >> 0g). Prandtl [1] and Guest [2 and 3) have proposed
(1.1) as a yleld criterion for solid bodies, considering these as granular
media with a high cohesion between particles. An analcgous criterion has
been proposed by Deriagin [19] on the basis of a physical analysis. Evidenly
S should be taken to be the theoretical and not the actual strength of the
material of the body, since the latter depends on local defects, whereas in
the context of Formula (1.1) it must include the cohesive stress averaged
over the whole shear plane.

Expression (1.1) 1s a refinement of St.Venant's criterion in that 1t takes
into account the effect of normal stress on the value of the critical tan-
gential stress.

A related criterion would be that of Schleicher [4]

ga=ci+Bo=V217,  (B=const) (1.2)
Where

1 2 2 3 =
si==V(1—6) +(—0)f + (Gs—c ) =Vos,  (1.3)
(cé are the components of the deviator of the stress tensor)

- 1 1
. G = ”3—(51+52+°3) = 5 Gii (14)
Expression (1.2) is a refinement of Mises' criterion in that it takes

into account the effect of the mean normal stress on the critical value of

the intensity of shear stress (or, what amounts to the same thing, of mean
shear stress [6]).

811



812 V.V.Novozhilov

2. In generalizing criteria (1.1) and (1.2) to strain-hardening materials
two extreme hypotheses are possible.

2a) The hardening is governed by an increase in the coefficient of
internal friction.

b) hardening depends on the internal elastic forces of an Intergranu-
lar and inter-block nature.

If {a) is valid then the boundary of the region of elastic strains (de-
termined without taking into account the effeet of ¢ or cn) expands in
all directions under plastic deformation, and if (b) 1s valild, thls region
(again determined without taking into account the effect of o or 0,) is
dilsplaced as a rigid body [7].

In actual fact both theseg effects exist and, as experiment shows, (ses,
for example, [8]) initlally (with plastic strains not exceeding 1 — 2%) the
effect of boundary translation predominates but thereafter the process is
mainly one of expansion. The same conclusion 1s reached from the results
of experimental studles of the heat generated during plastic deformation.

It has been established that part of the work done in plastic deformation
is not converted into heat, which indicates the accumulation within the body
of latent elastic energy. The ratio of this part of the work to the total
work done in the plastic deformation decreases monotonously wilth increase in
the latter [9]. It follows that the part played by elastic microstresses in
the hardening process becomes less significant and glves way to the effect
of the inerease in frictional forces.

These phenomena may be explained as follows: polycristalline bodies,
belng microscopically {and supermicroscopically) heterogeneous and anisotro-
plc {on account of their granular structure and in view of the structural
defects in each individual grain) constitutes (from the point of view of
structural mechanics) a statically indeterminate system with a huge number
of elements. As the loading increases the elements of this system enter the
plastic range not simultaneously but gradually, which mecroscopically is
observed as a monotonous increase in the coefficient of friction, In addi-
tion, as plastic deformation develops, elastic interactions are set up
between the element of the system which are interpreted macroscopically as
a hardening of the material with increase in load and a softening of the
material under plastic deformation in the opposite direction (hence the
Bauschinger effect).

Special mention should be made of alternating plastic deformation which we
shall now discuss in some detall. The work done in such deformation increases
with the number of cycles »n and is approximately proportional to this num-
ber, the magnitudes of the plastic strains (or stresses} lying within certain
specified 1imits. It has been discovered {[10], [11] and others) that the
plastic hysteresis loop after an initial stage usually becomes steady: the
material, so to speak, adapts 1tself to the cyclic loading. In fact this
means that as the number of cycles increases the magnitude of the coefflci-
ent of internal friction becomes stabilized and thereafter the shape and
size of the hysteresis loop is determined only by microelastic effects., It
is true that one can ind references [12 and 13] which indicate that stabl~
1ity of the plastic hysteresis loop under cyclic loading 1s not always
achieved; as the number of cycles increases the loop either narrows mono-
tonously or 1t widens monotonously. The first case corresponds to a monoton-
ous increase 1n the coefficient of internal friction (with increase in the
number of cycles) and the second to a monotonous decrease. Nevertheless,
in cyclic loading migroelastic effects undoubtedly predominate over the
effects of change in internal friction, particularly when the loop 1s narrow.
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Consequently, as a fundamental hypothesis, we shall assume that the coeffi-
cient of internal friction 1is constant. However, in order to be able to
compare the results which follow from both hypotheses the other extreme case
will be studied, in which hardening is attributed wholly to an increase in

the coefficlient of internal friction,

3. If we take the coefficient of internal friction to be constant and
postulate that the relation between plastic strains and the macroscopic ten-
sor 8;,, which defines the elastic microstresses [1% and 7], is linear,
then the criterion (1.1) can be generalized as follows:

ot = ;_(51 — §3) — ;”G* (8P — &5°) + %0‘ (01 4 8;) = oS = 7, (3.1)

Here ¢&;P, &,°, &4 are the principal components of the plastic strailn
tensor (it being assumed that &P > £,° >> &,f), G* 1is the strain hardening
modulus 1n shear, T*(m i1s the .initial plastic resistance of the material
to pure shear (i.e. the resistance to shear when gPy; = O)

Similarly, the criterion (1.2) can be generalized to the case of an ldeal

Bauschinger effect [7]. g2* = 6° - B = Vi 1, © (3.2)

Here
6" = Vci?'f’i;' - % Ve — 62 + (62° —65°)* + (6° — 01°)*  (3.3)
s of = af— ety (3.4

The quantities T,®, a, P and G* in (3.1) and (3.2) are assumed to be

constant. We apply the assoclated flow law

dep = h 2= dF (3.6)

0%-

As a loading criterion we take F = ¢ * (3.1). In this way we obtain
the following relations between stresses and plastic strains:

(dev)y = 3 (1 + o) hder*,  (deP)y=0, (der)y = — 1 (1 —a)hdg,* (3.7)
Here (dev)J are the principal values of the tensor of plastic deformation

increments dew, . It follows from (3.7) that
der = (de?), + (deP)a + (deP), = ahdg,* = o [(der), — (deP)s] >0 (3.8)

Thils shows, therefore, that if we take a strain-hardening law in the form
(3.1) it follows from the assoclated flow law that any plastic deformation
must be accompanied by a residual monotonous increase in volume, which must
be interpreted physically as the formation within the body of microscopic
holes, 1.e. as plastic cavitation.,

Iff we now take (3.2) as the strain-hardening crifterion and substitute
this expression in the associated flow law (3.6), we obtain

dep = |20 4 1 | hdg,* 3.9
&F = 5o 1 3P0 | hdge (3.9)
Thus the plastic deformation may be sub-divided into a deviator part
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or

3.
do = 2% hdgy* (3.10)
and an all-round residual change in volume
deP:::dsé’:: Bhdg,* (3.11)
Squaring (3.10) {in the scalar sence), we obtailn
do? =V doEda? = hdgy* >0 (3.12)

where d3P 1s the differential of the arc of the deviator "path" of plastic
deformation. Also,

der = Bda? or er =BL >0 (L = \ dav) (3.13)
Herc I 1s the length of the plastic deformation "path".

It 1s obvious that both the hardening laws (3.1) and {3.2) considered
above lead to the conclusion that plastic deformation must be accompanied
by a residual increase in volume (plastic cavitation). The difference in
these two laws, however, 1s that according to (3.1) and (3.6) the additional
plastic strains which result from taking o, into account in the yleld cri-
terlon reduce to plane strain (an all-round expansion in the shear plane)
whereas according to (3.2) and (3.6) the additional plastic strains result-
ing from taking into account the mean normal stress ¢ 1n the yleld crite-
rion reduce to an all-round {three-dimensional) expansion. Which of the
two varlants of the theory 1s closer to the truth must be established experi-
mentally.

4, 1In order to complete the investigation we shall in addition derive
formulas which correspond to the assumptlo that hardening 1s governed by an
increase in the coefficient of internal friction. Here we must take 4, In
(1.1) and (1.2) to be a function of the plastic strains which varies accord-
ing to the hardening law. This means that the coeffilclents o and g will
also be variable. As a first approximation we can estimate o by discarding
the second term of the left-hand side of (1.1). Then

a2 (4.1)

The theoretical resistance of the material in tension should be considered

as proportional to Young's modulus. 1

S = E
where # 1s a non~dimensional constant of the order of 10 (see, for example,

[15] page 19).

Thus ~ kR (4.2)
Substituting (4.2) into (1.1) we find that
1 ko, o .
81 =% (61— 3) + j57 (627 — 33 ) = T (4.3)

Substituting (4.3) into the assoclated flow law we obtain the following
formulas for the principal values of the tensor of plastic strain increments:
1

(de?), = .12- (1 + —g,— c,)hdgl, (deP)s = 0, (deP), = -3 (1 + "2-“33) hdg, (4.4)

It follows from this that
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deP — (dep)l + (dﬁp)z + (dSp)g = — %— [53 (dE‘,p)l + O1 (dep)3] =
= —27?-. [deTp _|_ Gndanp] = —2[;‘_‘ (dA' + dAn) (4'5)

Here A: is the work done by the maximum shear stresses and A, is the
work done by the normal stresses ¢, in the plastic deformation,

1 1 .,
dy? = 4 [(de?), — (deP)s], den? = 4 [(de?); + (dgP)s] (4.6)
Also 2k -
’ epZF(A:+An)>O (4.7)
We shall consider now the case when (1.2) is taken as the strain-hardening
condition. Assuming the coefficient g to be varlable, we can determine its
value (to a first approximation) from the equality

1 [3s; 3k15; -
GBS, B="g="3 (s =) (4.8)
Hgre § 1s the theoretlical strength in all-round tension.
Then ]
e g2 = (1 +ky F) i =T, (4.9)
Substituting (4.9) in the associated flow law, we find that
cic ky ky

Thus the increment in the deviator of the plastic strain tensor 1s
P Gi,' ky
dof} = _7_(1+——a) hdg, (4.11)
7] E

The second term in the square brackets in (4.10) corresponds to an all-
round residual change 1n volume

de? = def, = > s ,hdg, (4.12)
Squaring both sides of equality (4.11) (in a scalar sense), we obtain
V dof dof; = do® = (1 + Iy %) hdg, (4.13)
It follows from (4.12) and (4.13) that
3k1 i 3k1
P __ AP ~ 2 L D
deP = T ckl/EG‘d3 = 6ida (4.14)

Whence

3k 3k
e"=—E’~So,~d9”= "ElA>O (4.15)

We see then that the two variants of the theory considered in this section
(based on the assumption that the hardening effect must be ascribed to an
increase in frictional forces) enable us to conclude that any plastic defor-
mation must be accompanied by a residual increase in volume the magnitude of
which is found to be proportional to the work done in the plastic deforma-
tion. An analogous conclusion 1s reached in the variants of the theory con-
sldered in the preceding Section (based on the assumplon that the hardening
effect must be ascribed to microelastic forces) with, however, the quantita-
tive difference that the residual increase in volume proves to be propor-
tional not to the work done in the deformation, but to the length of the
path of the plastic deformation.
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5., The yield criteria (1.1} and (1.2) which take into account the effect

of normal stresses on the resistance to plastic deformation were proposed a
long time ago, although nowadays they are not used, and even mention of them
is seldom encountered in the literature. This is explained, by the fact that
experiment shows only a slight effect of both ¢ and g, on the way plastic
deformation arises and develops. In general this is in complete agreement
with the estimate glven above for the coefficient of friction ¢ , which,
according to (3.1}, is o) 0
.S - ¥

K CFE
(where » 1s of the order of 10), from which it follows that g (and con-
sequently B as well) must be of the order of 0.01. As a rule this 1is pre-
cisely the order of the corrections made to the value of plastic strains
when ¢ and ¢, are taken into account in the loading criteria, 1.e. these
corrections usually lie beyond the limits of accuracy of the formulation of
the phenomenologlcal theory of plasticity. However, there is a case (of con-
siderable practical interest) in which these corrections are significant and
comparable with terms of the basic order, This is the case of cyclic loading
whefi the plastic strains oscillate between certain maximum and minimum values.

When the cycle 1s symmetrical the path of plastic deformation is given by
Formula o N
L = 2nf (/‘:\dap) (h.2

Here n 1s the number of cycles and the integration is carried out over
one half-cycle. 7 1increases proportlonally to the number of cycles and for
a sufficlently large n can reach 2 significant order inspite of the small-
ness of 7 .

o —.- (504
= [

S

Consequently the residual plastic change of volume as glven by Formula
(3.13) can become significant inspite of the smallness of the coeffilcient g.
We arrive at analogous conclusions from the other variants of the theory con-
sidered above.

Thus, cyclic loading is a case which is particularly sultadble for illus-
trating the corrections to be applied to the theory of plasticity when ¢
and ¢, are baken into account in the yleld criteria, since the baslc terms
in the solution in this case are all the time bounded by definite 1limits,
whereas the correction terms increase monotonously proportionally to the num-
ber of cycles. In using these results, however, it must be borne in mind
that the formulas whilch were taken as the starting point refer to the case
of quasi-static isotermal deformation. Therefore in the foregoing discussion
of cyclic loading we must assume that the loading takes place sufficiently
slowly. The possibility of applying the results to the case of rapldly very-
ing loads requires a special investigation altough the qualitative aspect of
the phenomenon would evidently still hold good.

€. The results we have summarized are based on two hypotheses,
a) The associated yield law is valld to an extremely high degree.

b) The influence of ¢ or ¢, on the yield boundary, even to a first
approximstion, can be taken into sccount by the criterda (1.1) and (1.2).
These assumptions ere open to gquestion and the results obtained can be asses-
sed only by experiment. At the request of the author Ia.S. Sidorin and 0.G.
Rybakina carried out some experiments on three tubular specimens of aluminium
alloy subjected to alternating torsion. The dimenslons of the specimens were
as follows: external dlameter g = 30mm, the length of the working part
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7 = 120mm and the thickness h = 2mm . The materlal of the specimens was
annealed in order to eliminate initial anisotropy. The width of the plastic
hysteresis loop in all experiments was taken as 1% (converting from shear
to tension-compression). No restraint was imposed on the longitudinal defor-
mation of the specimen. Small peripheral
notches were cut on the speclimens and

“ T4 the change in distance between these
thg notches was measured during the tests.
The change in the dlameter of the specil-
/ mens was also measured. The devices
2 used measured the longitudinal exten-
, sions to an accuracy of 107 % and the
Jz T
2 ] ‘ g, 0*
75 2 - / 24 1A
rail
(! A ////
7 ///’ //’
A9 75 —
g L V’
}/ /
2
V74 // i 8 //
V] W s //
g i !
a 2q 40 7
Fig. 1 Fig., 2

lateral extensions to an sccuracy of 2 X 10°2% , which represented not more
than 5% referred to the maximum extensions observed during the experiments.
Consequently, the results obtalned cannot be attributed to measuring errors.
The results are shown in PFigs. 1 and 2 from which 1t can be seen that during
the first few cycles the curves of change in length and diameter of the spe-
cimens are of a complex and irregular nature, which evidently corresponds to
a transistory phase — the period in which the material adapts itself to the
cyclic loading. This is followed by & monotonous increase in both the length
and the dlameter of the specimens, this increase being approximately propor-
tional to the number of c¢ycles. The increments in the longitudinal and lat-
eral strains over one cycle were found to be of the same order. Specimen 1
was subjected to 69 cycles; specimens 2 and 3 falled after 21 and 26 cycles,
respectively, so that for specimen 2 the last strain was measured after 20
cycles and for specimen 3 after 25 cycles. Unfortunately i1t was not possible
in these experiments to make sufficiently accurate measurements of the change
in thickness of the specimens {which according to the first varlant of the
theory should remain constant and which according to the second variant of
the theory should increase in the same proportion as the length and diameter).
Thus the experiments do allow us to make a comarative assessment of criteria
(1.1) and (1.2).

It 1s seen that gualitatively the theory 1is borne out by experiment. The
maximum velues of the additional extensions of the specimens (the strains
which are accopmpanied by a plastic change in volume) are about O.4% , i.e.
are comparable with the width of the plastlc hysteresis loop and thus are
quantitlies of the basic order. Experimental studles in this fleld are con-
tinulng and the results will be published in the near future.

Concerning plastic cavitatlion and -its probable effect on the cyclic
strength of materials, frequent mention is to be found in the revelant liter-
ature, It 1s considered to be a process mainly of a granular nature which
initiates the formation of fatigue cracks. The latter are considered to be
the result of the merging of a serles of body defects {lacunae) which occurs
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after cavitation is sufficiently developed. Some valuable informatlon whilch
supports this conclusion and whlch is based on the analysis of numerous vis-
ual observations using a large Zeiss microscope can be found in [16]. Nadai
([17), page 261) mentions the plastic increase in volume discovered experi-
mentally under conditions of large deformations. Some authors have empha-
sized the impossibility of identifying cavitation with the growth of existing
cracks [18]. However, until now "the mechnism of plastic cavitation under
cyclic loading has not been clarified" ([19], page 437). It has been shown
above (at least for quasi-static isothermal deformations) that plastic cavi-
tation follows from the associated flow law and the assumption that the load-
ing condition, even very slight, depends on ¢, or on the mean normal
stress, Within the framework of these assumptions four variants of the
phenomenological theory of plastic cavitation have been derived.

In conclusion we raise the delicate question, which quite likely has
already occureed to the reader, as to what extent the above theory agrees
with modern concepts in solid-state physics and particularly with the con~
cepts of disloeations and the part they play in plastic deformation. Is not
the concept of a solid body as a granular medium with a high cohesion between
particles an archaism similar to the concept of shear as the sliding of one
plane over another in the presence of dry friction? For it has been proved
that shear is the result of the displacement of dislocations — a process
which develops gradually at a finite rate and not one which simultaneously
embraces the whole plane of shear. However, it seems that both polnts of
view can be reconciled. We should not forget that in actual bodles there are
not single dislocations but many, and the properties of statistical ensembles
frequently differ considerably from the individual properties of their mem-
bers. We might recall the law by which a gas enclosed in some contalner
exerts a uniform normal static pressure on the walls, Strictly speaking,
this assertion is invalid since in actual fact what is called here a "uniform
static pressure" i1s a result of the impacts of particles of the gas on the
walls, 1.e. the sum of discrete reactions. However, since the number of
particles 1s very large and the time between impacts very small, in a macro-
scoplic observation all their effects merge and as a result the concept of a
gas in a container as a continuous medium at rest but attempting to expand
in all directions 1s legitimate.

To derive the laws of plastic deformation from the properties of an indi-
vidual dislocation or from a small number of dislocations would be Just as
wrong as deriving the properties of gases by considering the motion of one
or several molecules.

When a number of dislocations are simultaneously displaced in a body and,
encountering various forms of obstacles, form walls or lattices it is proba-
ble that the body is subdivided into volumetric elements relatively clear of
defects separated from one another by surfaces made up of dislocations. At
the same time a solid crystalline body 1s made up of rigid elements which
are able to move one relative to another due to the surrounding defects. Is
not this situation reminiscent of granular bodies? The ability of disloca-
tions to multiply and to disappear, which complicates the plcture, does not
alter it qualitatively.

These arguments should not be taken as condemnation of the simple mechan-
ical models so often used in the theory of plasticity. The final judgement
on these can only come from a statistical theory of solid bodles which takes
into account defects in their structure, but unfortunately thls theory is
still in a rudimentary state. In any case, such mechanical models are in
fact substitutes for the statistical theory of solid bodies with thelr de-
fects taken intoc account, in the same way that the Boyle-Mariott law was
once a phenomenological substitute for the theory of gases — until it was
derived from this theory and became its corollary. Probably the fate of the
phenomsnological theory of plaaticit{euill be the same - sooner or later its
basic results (and also those described in this paper) will be drived from
the statistical theory of solid dodies.
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